Lecture 4

Wakefield in a bunch of particles. Loss and kick
factors, impedance

January 24, 2019



Lecture outline

@ Loss factor and kick factor
@ Impedance, its properties

o Cavity impedance



Wake field in a bunch of particles

Consider a beam consists of NV particles with the distribution function A(z)
defined so that A(z)dz gives the probability to find a particle near the point z,
f?\(z)dz = 1. Here we define positive z in the head of the beam, and negative
z in the tail. A particle located at z will interact with all other particles of the
beam through the wake!':

2 roo
Ap,(z) = _NTeJ' dz'A(z"\w (2" — 2)

z
Note that we neglect the dependence of the wake on the transverse coordinates
of the test and source particles, implicitly assuming that the beam is thin (the

line charge model of the beam). In relativistic limit the energy change is
Ag(z) = cAp;,

AE(z) = —NezJ' dz' Az \wy (2" — 2) (4.1)

The negative sign here means that, with our convention on the signs, a positive
wake means energy loss.
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Here we explicitly assume that the wake is behind the source particle; in a more general case use fiooo dz’ .. ..



Wake field in a bunch of particles

Later we will use the wake field of the bunch W,

We(z) = | dz'Az")wi(z' ~2) (42)
Note the relation AE(z)/Ne?> = —W,(z). We can similarly define a transverse
wake field of the bunch, W;.

Two important integral characteristics of the strength of the wake are the
average value of the energy loss A€, (per particle) and the rms energy spread,
A&, generated by the wake,

o0

AE,, = J dzAE(2)\(z)

—00

and
1/2

Aboms — Uw d2(AE(2) — A JPA(2)

The energy loss for the whole bunch is NAE,, .



The loss factor is defined as

1
Hoss — _WAgaV (43)

(the minus sign is chosen to make the loss factor positive).

Let us calculate 5,55 for a constant wake, wy = wy. From (4.2) we have

Wi(z) = wy JOO dz'A(z")

z

and!?
o0

dzA(2) Joo dz'\(z) = 1wo

V4 = W
loss 0 J i 2

—00
This explains why the factor s in Eq. (3.11) is also called the loss factor
— this is the loss factor in the sense of (4.3) for very short bunches.

12To calculate the integral use A(z) = d{»(z)/dz with P (—oo0) = 0 and P (o) = 1.



Transverse kick in a bunch of particles

Consider a beam passing through an element with an offset y which has
transverse wake wy(s). What is the deflection angle 0 at the exit?
A 1 [
0(z) = L(Z) = —J dz'NeA(z') - eyw(z' — 2)
p cp J;

2 oo
=y i 5 J dz' ANz Ywe (2" — 2)
yme? ),

The averaged over the distribution function deflection angle is
O = (0) = | dzBl2N\(2)
and the rms spread is
Ae1rms = <(e - eav)2>1/2
Similar to the loss factor, we define the kick factor,
6av —Ymc2

ick = —— = dzA dz' Nz (2" — 4.4
i = = | deMz) | Ml —2) (44)




Wake versus impedance

One often calculates the wake making the Fourier transform of the
Maxwell equations. This leads to the Fourier transforms of the wakes.
With a proper normalization factor, the Fourier transform of a wake is
called the impedance. It is also useful in stability analysis of the beams.

The longitudinal impedance has a physical meaning by itself: it is
proportional to the voltage induced by a sinusoidally modulated source
current on a sinusoidally modulated test one.

Both currents are sinusoidal waves
moving with the speed of light,

Is —_ /Soe—iw(t—z/c),

l; = lpe "®(t=2/¢)  The impedance

Zi(w) = V /I where V is the

voltage induced by the current /so
\ / on the current /yg.




Impedance definition

The longitudinal Z; and transverse Z; impedances are defined as Fourier
transforms of the wakes!?

1 [ . i [ .
ze(w):EL dSWg(s)e’“’s/c,Zt(w):—éL ds We(s)e’ /< (4.5)

The integration can be actually extended into the region of negative
values of z, because wy and w; are equal to zero in that region.

Because the wakes are real, we have Z;(—w) = Z;(w) and
Zi(—w) = —Z¢(w), or

ReZ(w) = ReZ(—w) Im Zy(w) = —Im Z(—w)
Re Z;(w) = —ReZi(—w) Im Z;(w) = Im Z;(—w)

13In principle, one can define a vectorial transverse impedance using the wake from
Eq. (3.2): Z:(w) = —jct jgo dz Wt(Z)ele/c-



Some Properties of Impedance

Impedance can also be defined in the upper half-plane of the complex
variable w where Im w > 0. It is an analytic function there!?.
The relation between the wakes and the impedances

W( _ i oo dwZ —iws/c
i(s) = o wZy(w)e

—00
wls) = ﬁj dwZ,(w)e@s/e
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This is true for classical wakes that are zero in front of the particle [and for the CSR wake in free space].



Various definitions of wakes and impedances

Other authors often introduce definitions of wake and impedance that differ
from each other:

@ A. Chao—uses z = —s as the argument of w. His longitudinal wake
wy — Wy, and the transverse one w; = —W;. The impedances agree with
ours. The same is for A. Wolsky, “Beam Dynamics in High Energy Particle
Accelerators” .

“Handbook of Accelerator Physics and Engineering” ed. by A. Chao et al.
Many articles use A. Chao's conventions for the wake and impedance.

P. Wilson—Z; is complex conjugate of ours.

S. Heifets, S. Kheifets (Rev. Mod. Phys, 1991) — the transverse wake has
a different sign. The impedances are the same.

S. Kheifets and B. Zotter (Impedances and Wakes in High-Energy Particle
Accelerators, 1997)—the wake is the same, the impedance is a complex
conjugate.

@ E. Gianfelice, L. Palumbo. (IEEE Tr. N.S., 37, 2, 1084, (1990))—extra
factor (2m)~1 in Z.
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Kramers-Kronig relations

The wake field can actually be found if only the real (or imaginary) part of the
impedance is known. Indeed, for arbitrary s < 0

11

O:

This means that for positive s

we(s)

1
T

1 [ ]
mls) = 5 Lo dwZy(w)e—@s/e (4.6)
1 o0
= —J' dw [ReZe(w)cosg—i—ImZg(w)sin ﬁ]
o c c
For s > 0 we have wy(—s) = 0. Substitute —s in (4.6),
dw [Re Zy(w) cos & Im Zo(w) sin g} , s>0
J—o0 C C
OO 2 (o)
dwReZg(w)cosg = —J dwReZg(w)cosg, s>0
Jso c T Jo c

Here we used the symmetry Re Z;(w) = Re Zp(—w).



Kramers-Kronig relations

A similar derivation for the transverse wake gives

2 o0
we(s) = —J dwReZt(w)sin%
0

Since the wake can be found from Re Z, it means that there is a relation
between Re Z and Im Z
ReZ(w) — w(s) = Z(w) — Im Z(w)

These are called the Kramers-Kronig relations.

Problem: Express Im Z(w) through Re Z(w) following the approach outlined
above. Answer:

1 Z(w'
nZ(w) = —~PV. [ dw 222
s w' —w

—00
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Resonant mode impedance

Let us calculate the impedance corresponding to the resonant
wake (3.11)

1 [ :
Zg(w):EJ ds wy(s)e'®vs/<

0
:2_%Joodse°‘5/c+"ws/c <cosg—&sing>
c Jo ¢ @ ‘
_2% 20 . [ WR w '
i)
_ R (4.7)
1+iQ(%—w%>

where wr = V@2 + o2, R = 7/« - the shunt impedance, Q = wgr/2«x.
For large Q, the impedance is peaked around w = twg.
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Resonant impedance

Resonant impedance for @ =1 (solid) and Q = 10 (dashed). Blue
lines—ReZ;, red lines—ImZ;.

1.00

0.75

Rez,/R, ImZ,/R

In the limit of very large @ for w > 0 we can approximate Re Z; by the
simple equation

ReZ/g = gRgR

S(w— wg) = mxd(w — wg) (4.8)
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Impedance of transverse resonant wake

We can calculate the transverse impedance for the transverse resonant
wake (3.13) (we drop index n here)

i [ i
Zi(w) = ——J ds we(s)e’*/¢
¢ Jo
_ _21%t J'oo ds ewas/2Qc+iws/c <in E
c Jo
_Zm® [ L e YT
Wwr w | Qg o G
T R
:% t (4.9)
- w w
1+iQ <f — cTR)

where wg = @/\/14 (2Q)2, Ry = 2Q:/wr (R: has dimension

Q/m). For large Q, the impedance is peaked around w = +wg.
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Energy Loss and Re Z;

The energy loss by a particle in a beam due to wake field is due to the real part
of impedance. Let us prove this. Start from Eq. (4.1)

(ee]
AE(z) = —Ne2J dz'A(z Ywe (2’ — 2). (4.10)
z
Average energy change in the bunch
AE, = —J dz?\(z)J dz' Ne®A(z")we (2’ — 2)
e e 1 (> .
= —NeQJ dzA(z)J dz’A(z')—J dwZy(w)e iwz'=2)/¢
—&3 % 21 | o
NeQ [ee] (e’e] ) fe’s) ) ,
= —— J dwZ(w) J dzMz)e’“’z/CJ dz'A(z')e~w# /e
21 J_o o oo
N 2 (oo
- 0| dezieiR)?
21 |
where
Alw) :J dz\(z)ew?/< (4.11)
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Energy Loss and Re Z;

17

Since A(—w) = A*(w), [A(w)|? is an even function of w and
Ne2 o0 A 2
ANy, = — dwRe Zy(w)|A(w)] (4.12)
0

An important property of the longitudinal impedance
Re Zy(w) >0 (4.13)

The beam loses energy at all frequencies (assuming there is no
interaction of the beam with active medium, or feedback).

Note that Eq. (4.12) is the energy loss per one particle. If we want the
energy loss for the whole beam, we multiply it by N

2 oo
Aéveam = ?tj dwRe Zy(w)A(w)]? (4.14)
0

where Q = Ne is the beam charge.



Energy loss for a point charge

18

The energy lost by the beam is equal to the energy deposited to the
source of the impedance.
For a point charge, A(z) =6(z), N =1 and A(w) =1, and the energy
loss is

e2 [e's)

AE = ——J dwRe Zy(w)

T Jo
If we know the spectrum of the energy losses &, (w), we can find
Re Zg(w)

o0
AE = L dwép(w) — Re Zy(w) = —ggsp(w) (4.15)
Using causality we can then calculate the wake through Re Z;(w) (and
find Im Zy(w)). In some cases this is the easiest way to calculate the
wake.

Another method is to consider a sinusoidally modulated beam,

A(z) o cos(kz) and calculate the power loss of such modulated current.
This power can be related to Re Z;(ck).



Resonant heating in a ring

19

In a circular machine, the beam passes by each element every revolution
period, so we have to generalize (4.14) for multiple turns. For this, we
consider A(z) as a periodic function of z with the period equal to the
circumference of the machine C and calculate the energy deposited over
r revolution periods. We then need to carry out the integration in (4.11)
over z from 0 to rC.

A
Ap(2) Ap(z—C) Ap(z—2C)

r—1
Az) =) As(z—nC)
n=0




Resonant heating in a ring

Defining
~ C .
AMw) = J Ap(z)e %/ dz (4.16)
0
we obtain
r—1 o
A = = 1 —exp(—irTow)
A - iwnTy A 417
((,U) ((,U)Ze (w 1—eXp(—/T0w) ) ( )

where Tog = C/c is the revolution period. In the limit of large number of
revolutions, r > 1, we have

,sin?(rTow/2)
sin?( Tow/2)

A (W) = A(w) — rwglA (w)[? Z 5(w — nw),
(4.18)

with wg = 271/ Ty.
20



Resonant heating in a ring

21

Substituting this expression into (4.14) and defining the power as
P = —A&peam/rTo we obtain

2 o
p- ?—02 3 Mnwo)PRe Znwo) (4.19)

This formula also works when there are many bunches in the ring—then
QAp in Eq. (4.16) is the charge distribution in all these bunches.

This result is important for calculation of heating in the ring of
high-current accelerators.



How to compute the bunch wake using only impedance?

Assume that you know the (longitudinal) impedance as a function of frequency,
Zy(w). You want to compute the AE(z) without calculation of the wake of a
point charge. Start from (4.2)

AE(z) = —Ne? JOO dz'A(z ) we(z' — 2)

—00

Ne? [ o o (ol
:__eJ‘ dz’?\(z’)J dwZy(w)e wE—=2)/c

—00 —00

= ——J dwZy(w)A(w)e'v?/¢ (4.20)

where
AMw) :J dz'A(z))e iw'/¢ (4.21)
For a Gaussian bunch A(z) = (2m1) /20, te /207

Aw) = e~ oz/2¢ (4.22)

22
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Let us prove Eq. (3.9). Use (4.12) (integrate from —oco to co)

and take a very long Gaussian bunch with rms length o,. For a Gaussian
bunch we have Eq. (4.22). For a very long bunch this is a narrow function

A(w)PR = e 29 ~ /rn"s(w) (4.23)

z

Hence, with [y = Nec/+/27mto, the peak current in the beam,

Ne? 1
©C Rezy(0) = ——

A av — —
N V2

elyRe Z;(0) (4.24)
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But when 0, — oo we are dealing with constant current — constant
magnetic field — no energy losses. Hence

Re Zy(0) =0 (4.25)

Because Im Z; is an odd function of frequency Im Z;(0) = 0, hence
Zy(0) = 0. Using the definition of the impedance (4.5)

1 [ :
Zg(w):CJ ds wy(s)e'®vs/¢

we see that
1 oo
Z(0) = J dswy(s) =0
c



